Moore graphs and beyond: A survey of the degree/diameter problem
نویسندگان
چکیده
The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter. General upper bounds – called Moore bounds – for the order of such graphs and digraphs are attainable only for certain special graphs and digraphs. Finding better (tighter) upper bounds for the maximum possible number of vertices, given the other two parameters, and thus attacking the degree/diameter problem ‘from above’, remains a largely unexplored area. Constructions producing large graphs and digraphs of given degree and diameter represent a way of attacking the degree/diameter problem ‘from below’. This survey aims to give an overview of the current state-of-the-art of the degree/diameter problem. We focus mainly on the above two streams of research. the electronic journal of combinatorics 20(2) (2013), #DS14v2 1 However, we could not resist mentioning also results on various related problems. These include considering Moore-like bounds for special types of graphs and digraphs, such as vertex-transitive, Cayley, planar, bipartite, and many others, on the one hand, and related properties such as connectivity, regularity, and surface embeddability, on the other hand. the electronic journal of combinatorics 20(2) (2013), #DS14v2 2
منابع مشابه
PhD Thesis: Topology of Interconnection Networks with Given Degree and Diameter
In this thesis I deal with the design of optimal interconnection networks. Optimality is interpreted as the largest possible number of nodes in the network, under given constraints on the number of connections attached to a node (degree of the node), and on the length of shortest paths between any two nodes (diameter of the network). Any interconnection network with bidirectional channels can b...
متن کاملDiameter Two Graphs of Minimum Order with Given Degree Set
The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملOn Mixed Almost Moore Graphs of Diameter Two
Mixed almost Moore graphs appear in the context of the Degree/Diameter problem as a class of extremal mixed graphs, in the sense that their order is one less than the Moore bound for mixed graphs. The problem of their existence has been considered before for directed graphs and undirected ones, but not for the mixed case, which is a kind of generalization. In this paper we give some necessary c...
متن کاملAn Overview of the Degree/Diameter Problem for Directed, Undirected and Mixed Graphs
A well-known fundamental problem in extremal graph theory is the degree/diameter problem, which is to determine the largest (in terms of the number of vertices) graphs or digraphs or mixed graphs of given maximum degree, respectively, maximum outdegree, respectively, mixed degree; and given diameter. General upper bounds, called Moore bounds, exist for the largest possible order of such graphs,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005